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Abstract

We demonstrate that atomically thin nitrogen-based binary group-V wide band-gap

indirect semiconductors (NX (X=As, Sb)) can show strong linear and nonlinear optical

activities. Contrary to NAs, we find that the fundamental optical absorption in NSb

is infact quite resilient towards the temperature variations between 0-450 K. Exciton

in NSb is however found to be less strongly bound (1.40 eV) compared to the more

tight case in NAs (1.63 eV), leading to a more delocalised Mott-Wannier type texture.

The inhomogenous excitonic linewidths for both monolayers within these temperatures

are found to be in the range of 100-400 meV. The largest nonlinear second harmonic

optical coefficient (2ω resonances) in NAs and NSb monolayers are obtained to be

∼270 and 636 pm/V at 2.6 eV (477 nm) and 3.2 eV (387 nm) respectively. We also

provided a detailed analysis of in-plane biaxial strain on these structures. We found

that a tensile strain is energetically more favorable and does not influence the exciton

binding energy in NAs. The nonlinear coefficient also significantly improves at the two

most important 810 and 1560 nm wavelengths compared to the cases offered by the
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monolayer transitional metal dichalcogenides. Our analysis is based on a fully ab-initio

G0W0+Bethe-Salpeter excited state theory. The temperature-dependent linear absorp-

tion spectra are evaluated by including the electron-phonon self-energies, whereas the

nonlinear spectra are treated using the modern theory of polarization within the same

perturbative approach.

Introduction

Excitons are the basic ingredients responsible for optical excitation in materials. Fundamen-

tally pictured as a quasi-particle in the framework of many body interactions, an exciton

is an electron-hole pair bounded together by a Coulombic force of attraction. Out of many

possibilities, this pair can be generated when the electron is kicked out by, for example,

photons from the ground-state orbital. How long this pair will hold together depends on the

duo’s binding energy. This interaction picture, once the pair is formed, resembles much like

a one-electron atomic system (Hydrogen), and therefore likewise distinct optical spectra are

expected. Similar to the hydrogen electronic energy quantization, the exciton Coulombic en-

ergy lowers width of the direct band-gap of the material. One electron picture obtained from

the standard generalized gradient approximation (GGA) density functional theory (DFT)

in principle does not account for such interactions. Instead, excitons are two-body dynam-

ically correlated phenomena and thus to understand their energy and lifetime, many-body

methods must be used; such as the Bethe-Salpeter equation (BSE) over the single-shot GW

corrections (applied on top of the ground-state energies). The former gives a direct access to

the optical absorption and binding energies; and hence the fundamental optical gap, while

the later fixes the missing energy eigenvalues that the DFT constantly struggles for. These

methods nowadays have become a standard routine task to unravel and understand the ex-

citonic driven optical properties.

There is, however, a basic part missing which is also needed to be addressed. The BSE

so developed was, however, accounted only for the frozen atom condition, i.e., atoms were
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assumed to be fixed in space or in other words, in the absence of lattice vibrations. As a re-

sult, the pole of the dielectric function (imaginary part) is required to be manually fixed such

that the spectra correlate with the experimental broadening. The role of this broadening

carries significant importance here since it directly adheres to the Heisenberg’s uncertainty

principle. The absence of the broadening would simply mean that the exciton lives forever

in that state and thus the spectra take the shape of a Dirac delta function. In principle,

this thermal broadening should enter as an exciton-phonon coupling matrix in the BSE.

However, the current theoretical strategy addresses this formidable challenge by adopting

the entry of this broadening as an electron-phonon coupling matrix into the BSE Hamil-

tonian. This approach, however, also quintessentially removes the manual selection of the

broadening in the dielectric function. This first-cut approximation is in fact quite successful

to justify the temperature-dependent excitonic binding energies, lifetimes, and spectra in

both semiconductor bulk and monolayers (MLs) within limited errors. Nevertheless, the

temperature dependency on optical properties are therefore more accurate and challenging

to compute, which makes the process flow more complicated and expensive and thus rare to

find in literature.

When the intensity of the light becomes very high, the semiconductor optical properties enter

into the nonlinear regime. In such a case, one can observe frequency overtones like second,

third, and other higher harmonics. For example, if the crystal structure is such that both

the inversion and time-reversal symmetries are broken, one can then show that the induced

time-varying electric dipoles do not cancel out, instead leading to a minimum detected sec-

ond harmonic signal as a nonlinear one. If the intensity is gradually decreased, this nonlinear

behavior converges to the above discussed linear optical properties. Nevertheless, in order

to capture these nonlinear dynamics, a time-dependent DFT (TDDFT) is therefore needed.

This was initially developed by Runge and Gross who numerically integrated the time-

dependent Kohn-Sham equation directly in the real-time domain. However, the accuracy of

the results depends on the approximation used in the exchange-correlation kernel in the time-
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dependent Hamiltonian. The hierarchy in this Jacob’s ladder starts from the independent

particle approximation (only the Kohn-Sham eigenvalues) to time-dependent Hartree (aris-

ing due to local field effects resulting in system inhomogeneities) to adiabatic local density

approximation (quasi-statically space and time-varying density) to finally time-dependent

screen exchange (electron-hole correlation is screen exchanged). The last one therefore also

involves excitonic dynamics and is also known as time-dependent BSE (TDBSE) or the

dynamical BSE. Modern theory of polarization developed by Kingsmith and Vanderbilt pre-

scribes a method to obtain the coupling between the time-varying electric field and the Bloch

electrons in an extended system. The Berry’s phase change around the complete Brillouin

zone (BZ) leads to the macroscopic time-varying polarization and therefore the TD Kohn-

sham equation of motion can be solved. The nonlinear coefficients can then be obtained by

imposing a suitable cut-off in the polarization Fourier series.

Two quantities are greatly required in order to observe strong exciton-driven optical proper-

ties in semiconductors: a weak dielectric screening and crystalline noncentrosymmetry (i.e.,

lack of inversion symmetry). Whether or not spin-orbit coupling (SoC) will originate depends

if an additional time-reversal symmetry is present or not. The later leads to the coupling

between spin and momentum in the valleys and defines the momentum forbidden dark and

bright states. For example, the monolayer transitional metal dichalcogenide (TMDC) WSe2

posses a time-reversal symmetry and thus has a large spin-orbit splitting in its valence band

at K point. The bright exciton is thus formed when an intravalley (intervalley) electron

pairs with a hole having a parallel(antiparallel) spin.1 In the past, there have been many

benchmark strategic experiments to push the binding energies and nonlinear coefficients to

their extremes (for example, see Table S1 in the supplemental information). Excitons in two-

dimensional semiconductors rather possess larger binding energies and oscillator strengths

due to an in-plane quantum confinement compared to their bulk counterparts. In the later

case, the electric field is properly screened out by the surrounding charges, while in mono-

layers it is not because of which an intense Coulombic interaction develops leading to a very
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strongly bounded pair. There is, however, another justification to why such an atomic layer

should absorb a large amount of light. Castro Neto et. al.2 showed that strong peaks in the

optical conductivity can be justified from the ground state electronic band structure. The

peak corresponds to those points in the BZ where the transition bands run parallel to each

other. This is known as band-nesting. It was recently demonstrated that this band-nesting

can also justify the nonlinear second harmonic generation (SHG) signals in uniaxially tensile

strained TMDCs.3

Shifting the focus from the traditional planer monolayers, Taheri et. al.4 demonstrated that

group-V monolayers based on nitrogen (NX, where X=P, As, and Sb) in their β-phase ex-

hibits thermodynamically stable buckled structures. Using a purely ab-initio technique at

the level of temperature dependent BSE, it was recently shown by the authors5 that β-

phase nitrogen phosphide (NP) monolayer can exhibit very high excitonic binding energy

and strong absorbance spectra in the visible region. The nonlinear coefficients SHG along

with the third harmonic generation (THG) were also found very high compared to the tra-

ditional TMDCs and monolayer transitional metal monochalcogenides (TMMCs). In this

work, we extend the road-map of optical activity in monolayers of β-phase nitrogen arsenide

NAs and nitrogen antimony NSb. We ask the followings: (1) How an electron taking part

in the formation of an exciton relaxes from the conduction band in the presence of lattice

vibrations, (2) how temperature controls the excitonic non-radiative line widths via exciton-

phonon coupling, (3) can band-nesting in these cases justify the strong absorption, (4) are

the excitons Mottt-Wannier or Frenkel type, (5) what are the SHG coefficients, and (6) can

an in-plane biaxial strain improve the binding energies and SHG coefficients. We response

to these questions in a purely ab-initio way. We use many-body perturbation theory at the

level of BSE to justify the excitonic-driven linear spectra. All temperature corrections are

computed using density functional perturbation theory on the top of the ground state DFT

eigenvalues. The nonlinear SHG coefficient is computed by solving TDBSE in real-time do-

main. Berry’s phase polarization is used to compute the couplings between Bloch electrons
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and time-dependent electric-field. All strain-dependent calculations follow the same method-

ology as discussed above. Our results on the optical properties of β-phase NAs and NSb are

summarized in Tables 1, 2, and 3. An extensive comparison with other monolayers and bulks

are provided in Tables S1, S2, and S3 of the supplemental information. In addition, we also

put there all the required theoretical background and convergence results. What follows, in

the methodology section, we present a lucid picture of our computational details for ground

state, excited state, and nonlinear analysis. In the results and discussion section, we justify

our results together with summarizing our outcomes.

Methodologies

Ground state calculations

β-phase NAs and NSb monolayers are thermodynamically stable in their non co-planer struc-

tures. A unit cell composed of two atoms was thus made, leading to a C3v 3m point

group three-fold symmetry. To cut-down the Coulombic interactions due to periodic im-

ages along the out-of-plane direction, a vacuum-slab-vacuum structure was created with a

vacuum separation extending to 20 Å on either side. The figure below demonstrate the

schematic view of such a monolayer. The optimized in-plane and out-of plane lattice con-

stants were found to be (2.79, 1.00)Å for NAs and (3.00, 1.13)Å for NSb respectively. These

optimization were done by using the open source Quantum Espresso DFT package.6 Fully

relativistic norm-conserving pseudopotentials were first generated7 which also included non-

linear core-corrections in N (core states: [He], valence states 2s and 2p), As (core states

[Ar], valence states 3d, 4s and 4p) and Sb (core states [Kr], valence states 4d, 5s and 5p).

A Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional was used rather than a

local density approximation (LDA) since the later is known to underestimate the electron-

phonon couplings by 30%.8 A kinetic cut-off energy of 80 Ry for all the atomic species was

found to be sufficient to achieve energy convergences on a Γ-centred 12×12×1 Monkhorst-

6



Pack grid. A plane-wave basis set was then used and the cell was finally allowed to undergo

energy minimization constraining all forces and energy cut-offs below 10−5 Ry/bohr and

10−5 Ry respectively. The self-consistent charge densities and states were computed using

the two-spinor wavefunction and switching on the noncollinear spin-orbit interactions.

Electron-phonon coupling calculations

The lattice vibration computations were calculated using the extended PHonon package

within the same DFT code. For both the structures, a regular dense phonon q-grid 18×18×1

was chosen at a rigid self-consistent energy threshold 10−16 Ry and single iteration mixing

factor of 0.7 Ry. In order to compute the electron-phonon couplings, the entire irreducible

BZ was first randomly sampled to a fine 200 phonon q-grids. The dynamical matrices, using

the same energy threshold, and the perturbed potentials on these grids were then computed

by mapping the self-consistent charge densities on the regular grids. A non-self consistent

calculation was then carried out on these random grids which leads to the electron-phonon

corrected electronic states along the BZ. Using this last step, the electron-phonon matrix

elements were finally evaluated after constructing the initial states.

Linear spectra G0W0+BSE calculations

The excited state corrections were computed using the MBPT open source code package

Yambo.9 The G0W0 corrections were applied on to the 5 electronic bands on the either side

of the valence band maximum which we also find to be most crucial in order to capture the

optical transitions. A total of 200 bands (lowest 20 occupied bands and highest 180 unoc-

cupied bands) were used to sum up the irreducible polarization response function. Local

field effects were introduced in this linear response sum by switching on the random-phase

approximation kernel. An energy cut-off of 10 Ry was found sufficient to converge this sum

describing the system inhomogeneity. The microscopic dielectric function function is then
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constructed by convoluting the polarization function with the bare Coulomb potential. The

dynamic screening is then computed by convoluting the inverse of the microspopic func-

tion again with the bare Coulomb potential. A final convolution between this Coulombic

screening and the non-interacting Green’s function (G0) leads to the full frequency G0W0

self-energy. We note here that most of the open source code splits this self-energy into a

pure exchange term and a correlational term for computational convenience. The former is

static while the later is a dynamic in frequency and is thus a complex quantity. The inverse

microscopic dielectric function inside the dynamic screening term demands some comments.

This inverse function is plagued with numerous poles located near the real axis which makes

the screening convolution integral very expensive to compute. To implement this practically,

a plasmon-pole model is often used which mimics the inverse dielectric function by approxi-

mating it at the most prominent pole, which is the plasmonic frequency. The plasmon-pole

model by Godby and Needs10 is used in the package which uses one pole at zero frequency

while the other at the plasmon frequency. The later is to be chosen such that the dielectric

function converges. This correlational self-energy is then updated for each energy start-

ing from the non-interacting Kohn-Sham eigenvalue and put back again into the nonlinear

quasiparticle equation. However such an iteration would create a redundancy in computing

the self-energy. Thus, the nonlinear equation is linearized using the Taylor’s series upto the

first order under the assumption that the renormalized energies are not far from the Kohn-

Sham mean fields. This leads to the quasi-particle energies. In case if the non-interacting

Green’s function and the dynamic screening is also updated at each iteration process, then

the computation scheme becomes GW. If the dynamic screening is updated only once, then

it is a G0W0 process. Coulombic divergences occurring in all self-energies are fixed by inte-

grating them over the irreducible BZ space by assuming first that the density matrices are

the smooth function of momenta. The diverging quantities are then numerically integrated

by using a Montecarlo technique that creates numerous randomly small BZs about each

momenta vector. We therefore used 107 random points distributed all over the irreducible
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BZ with a cut-off of about 3 Ry to converge the integrals. In addition to these, a Coulomb

truncation (similar to the DFT case) is applied to cut down the periodic interactions between

the repeated monolayer images.

The absorption spectra is obtained by solving the time independent BSE. The same cut-offs

are used to build up the exchange electron-hole attractive and repulsive kernels in the BSE

matrix. An important note is that electronic transition are very sensitive to BZ samplings. A

dense sampling would then be more meaningful to capture optical transitions properly along

the high symmetry routes. For this purpose, we fine sample the entire BZ into 48×48×1

on a shifted grid. First, on these grids we obtain the kernels for the independent-particle

cases. Next, we obtain the interacting BSE kernels on the unshifted 12×12×1 course grids.

The BSE kernels on the fine grids are now interpolated using a Wannier interpolator which

maps the fine and the course grids. This methodology11 makes the expensive fine-grid

BSE computation relatively quick without losing accuracy. We go beyond the standard

Tamm-Dancoff approximation12 by including both the resonant and antiresonant electron-

hole matrix elements in the BSE hamiltonian. A manual broadening of 0.1 eV is applied to

construct a Lorentizan shape spectra together with an in-plane perturbing electric field. The

quasi-particle energy corrections and the static screening are then added from the previous

G0W0 calculation. In the presence of lattice vibrations, instead the corrections correspond-

ing to the electron-phonon interactions on the energy bands are implemented. The G0W0

gaps are now opened up using a scissor operator that provides a rigid shift to the bands.

No external broadening is required as the exciton line-widths are now computed using the

electron-phonon matrix elements. The BSE matrix is then diagonalized and solved to obtain

the poles which corresponds to the transition energies.

Nonlinear SHG calculations

The presence of an external electric field breaks down the crystal symmetry. Thus, we

removed the symmetry of the crystal (the initial 12×12×1 grid) in order to compute the
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nonlinear coefficient first. The symmetry was removed by choosing an in-plane electric field.

We map to this to a dense symmetry removed 48×48×1 shifted grid in the presence of

the same electric field. The time-dependent BSE was then solved at these dense 48×48×1

sampling grids. The linear coefficient was extracted by applying a delta-like pulse where as

a monochromatic sinusoidal wave is used to obtain the nonlinear SHG coefficient. The time-

dependent polarization was obtained from the Berry’s curvature. This TDBSE was finally

solved using the Crank-Nicholson algorithm13 at a time step of 0.01 fs. The sudden switching

on of the electric filed results in spurious noise at the initial level of the polarization signal.

Thus, we increase the simulation time to 55 sec in order to get a clean signal. Additionally,

to mimic effects from thermal broadening, defects, etc. a damping coefficient of about 0.17

eV was found suitable. All the linear and nollinear coefficients are obtained from the clean

polarization signal.

Table 1: Electronic ab-initio energy comparisons in β-NX (X=As, Sb). a and z are the
in-plane lattice parameter and buckling heights, respectively. The direct-gap is along Γ-M
while the indirect-gaps are in the direction Γ-K-M.

Material a z Indirect-gap Direct-gap
(ML) (Å) (Å) (eV) (eV)

NAs 2.79 1.00 2.36 (PBE, M⌢Γ ↔ K) 3.06 (PBE, M⌢Γ)
4.51 (G0W0, M

⌢Γ ↔ K) 5.00 (G0W0, M
⌢Γ)

NSb 3.00 1.13 2.06 (PBE, M⌢Γ ↔ K) 2.52 (PBE, K)
3.70 (G0W0, Γ

⌢K) 4.80 (G0W0, K)
3.58 (PBE, Γ)
4.45 (G0W0, Γ)

2.88 (PBE, M⌢Γ)
4.77 (G0W0, M

⌢Γ)

Table 2: Lattice vibrational ab-initio energy comparisons in β-NX (X=As, Sb). ωLO and
ωTO are the zone-centre longitudinal and transverse optical in-plane frequencies while ωZO

is the optical out-of plane frequency. ZPM denotes quasi-harmonic zero-point motion and
dEi

g

dT
shows the temperature dependent indirect band gap.

Material ωLO − ωTO|Γ ωZO|Γ ZPM
dEi

g

dT
(ML) (cm−1) (cm−1) (meV) (meVK−1)

NAs 566 672 105 -0.18
NSb 523 596 80 -0.47
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Table 3: Quasi-particle direct band-gap between Γ and M of the BZ, fundamental exciton
binding energy (BE), linewidth (LW) and nonlinear coefficients (at excitation wavelength in
nm) in NAs and NSb monolayers. Notations: rt = room temperature (300 K).

Material Substrate rt Band-gap rt BE rt LW
∣∣∣χ(2)

∣∣∣(λnm)

(eV) (eV) (meV) (pm/V)

NAs isolated 3.27 (PBE, M⌢Γ) 1.83 278 636 (387)
5.38 (G0W0, M

⌢Γ) 52 (810)
14 (1560)

NSb isolated 3.58 (PBE, Γ) 258 275 (477)
4.45 (G0W0, Γ) 1.79 31 (810)

4.77 (G0W0, M
⌢Γ) 21 (1560)

The respective G0W0 corrections are added to the temperature dependent PBE gaps.

Results and discussion
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Figure 1: Bare electronic dispersion of NAs monolayer showing the partial density of states
projected on the former. Plots (a) nitrogen 3P j= 1

2
, ms=−1
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and (b) arsenic 4P j= 3
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shows the spin orbital occupancy in valence and conduction bands respectively. The arrows
in (b) demonstrate how the electron that takes part in optical transition gets scattered due
to the thermal broadening of the energy bands.
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to the thermal broadening of the energy bands.
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Nonlinear Excitonic Responses in an Atomically Thin Indirect Semiconductor Nitrogen

Phosphide. The Journal of Physical Chemistry C 2021, 125, 12738–12757.

(6) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.;

Car, R.; Cavazzoni, C.; Ceresoli, D.; et al., M. C. Advanced capabilities for materials

modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.

(7) Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B

2013, 88, 085117.
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Figure 7: Ground state (grey) and G0W0 (black) electronic band structure in (a) NAs and
(b) NSb monolayers. The horizontal dashed lines are with respect to the DFT top and G0W0

bottom of the valence and conduction bands respectively. All the vertical arrows represent
direct quasi-particle gaps with most of the electronic transition weights.
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Figure 8: Fundamental exciton formation in (a) NAs and (b) NSb monolayers. The elec-
tronic transitions representing exciton weights are projected onto the ground state electronic
dispersion in both the cases are shown by the yellow shade. The inset exhibits the corre-
sponding excitonic weights in the BZ of the two cases.
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Figure 9: Excitonic wave functions for first excitons, a) NAs, b) NSb.
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Figure 10: (a) NAs and (b) NSb excitonic oscillator strengths as a function of temperature
for all exciton with strengths more than 10 %.
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Figure 11: Absorption spectra and joint density of states in (a) NAs and (b) NSb monolayers.
solid line corresponds to the G0W0+BSE calculations in absence of lattice vibration. The
effect of lattice vibrations on the spectra changes the widths and positions, and are shown
for temperatures 0 K (dashed curve) upto 450 K at a step of 50 K. The vertical dashed lines
are the direct quasi-particle gaps. The dots are the guide to eye showing the shifts of the
peak positions.
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Figure 12: (a) Inhomogeneous linewidth of fundamental exciton in NAs monolayer. The
symbols are the ab-initio data while the dashed line is the phenomenological excitonic width
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the most prominent mode that build this fundamental exciton.
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Figure 13: (a) Inhomogeneous linewidth of fundamental exciton in NSb monolayer. The
symbols are the ab-initio data while the dashed line is the phenomenological excitonic width
equation. (b) Exciton phonon coupling function variation with phonon frequency showing
the most prominent mode that build this fundamental exciton.
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Figure 14: (a) Convergence demonstration of the absorption spectra using the approach
of nonlinear real-time BSE and static BSE for NAs monolayer. The shaded region (yellow)
demonstrates that in the presence of a delta-like field with low intensity (500 KWcm−2 in this
case), the linear response (black) can be obtained from the solution of the time-dependent
BSE. A scissor is added in the exciton Hamiltonian to mimic the G0W0 gap in both the
cases. The time-dependent induced polarization along the crystalline a-axis are also shown
due to (b) delta-like field and (c) a quasi-monochromatic field along the b-axis respectively.
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Figure 15: (a) Convergence demonstration of the absorption spectra using the approach
of nonlinear real-time BSE and static BSE for NSb monolayer. The shaded region (yellow)
demonstrates that in the presence of a delta-like field with low intensity (500 KWcm−2 in this
case), the linear response (black) can be obtained from the solution of the time-dependent
BSE. A scissor is added in the exciton Hamiltonian to mimic the G0W0 gap in both the
cases. The time-dependent induced polarization along the crystalline a-axis are also shown
due to (b) delta-like field and (c) a quasi-monochromatic field along the b-axis respectively.
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Figure 18: Quasi-particle G0W0 gaps in biaxially strained (a) NAs and (b) NSb monolayers.

Figure 19: (a) Excitonic energies and (b) binding energies in biaxially strained NAs and NSb
monolayers.

28



Figure 20: Absorption spectra and joint density of states of monolayer NAs under biaxial
(a)-(e) tensile and (f)-(j) compressive strains respectively. TThe vertical dotted lines are the
most important electronic transitions with maximum relative exitonic intensity, while the
dashed lines are the direct quasiparticle gaps.
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Figure 21: Absorption spectra and joint density of states of monolayer NSb under biaxial
(a)-(e) tensile and (f)-(j) compressive strains respectively. The vertical dotted lines are the
most important electronic transitions with maximum relative exitonic intensity, while the
dashed lines are the direct quasiparticle gaps.
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Figure 22: Improvements in second harmonic coefficients in monolayer NAs under biaxial
(a) tensile and (b) compressive strains respectively. The dotted and dashed lines are the two
important wavelengths 1560 nm and 810 nm respectively.

Figure 23: Improvements in second harmonic coefficients in monolayer NSb under biaxial
(a) tensile and (b) compressive strains respectively. The dotted and dashed lines are the two
important wavelengths 1560 nm and 810 nm respectively.
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